Multi-Channel Radiochromic Film Dosimetry

Adapted from A.Micke Spain, April 2014

Single Channel Film Dosimetry

- Calibration Curve X=RR_{ave} = R_{ave}(D) \leftrightarrow D_R = D_R(R_{ave})
- Color channels X=RGB
 D_X = D(X_{ave})
 correlates average response of film-scanner system
- Robust method any X value delivers dose D_x(X)

Single Channel Film Dosimetry

Problem:

Specific pixel does not behaves like average

• Disturbance ΔX generates ΔD_X X + $\Delta X \leftrightarrow D(X) + \Delta D_X$

- Film uniformity variations
- Scanner non-linearities
- Newton rings, noise, finger prints curling, ...

•Any X value delivers dose D_X(X)

- Each channel specific ΔD_{X}
- No indication of 'big' $\Delta D_{\rm X}$
- What dose D_x is best?

Multi-Channel Film Dosimetry

- RGB Calibration Curves
 - Dose induced color C
 C(D) = {R(D),G(D),B(D)}
- Dose exposure generates only 'certain' colors C
 Not all C deliver dose value
- Observed color C_{scan} is superposed with disturbance ΔC
 - $C_{scan} = C(D) + \Delta C$
- Solution: Optimize dose D value, *i.e.* minimize ΔC
 - $| C_{scan} C(D) | \rightarrow min_D$

Triple Channel Film Dosimetry

• Model:

Scanned optical density $d_{X,scan}$

- $d_{X,scan}(D) = d_{X,D}(D) * \Delta d_X = -\log(X)$ for X = RGB
- $d_{X,D}$ is calibration function (average behavior)
- ! disturbance Δd independent of dose + X (wave length) !but $\Delta d = \Delta d($

thickness, scanner, noise, artifacts)

- Solution:
 - Minimized function ϕ vs. disturbance Δd :

 $\phi(\Delta d)$ = ($D_R - D_B$)² + ($D_B - D_G$)² + ($D_G - D_R$)² \rightarrow min_{Δd}

Triple Channel Film Dosimetry Example

• Signal split into *dose dependent* and *dose independent* part

- Dose map (D dependent part)
- Disturbance Δd map (D independent part) includes film uniformity variations, noise etc.

Triple Channel Dosimetry: Dose Consistency

Film consistent with Calibration Patches

- Film has same dose response for X=RGB
- i.e. same dose values D_X are calculable
- •Offset between D_X measures calibration consistency

Example: Profiles original calibration patch and 90° rotated scan

Triple Channel Dosimetry: Consistency Map

- Dose map
 - measurement result
- Disturbance map

 removed error
- Consistency map

 remaining error
 ideal case: noise only

Consistency Map(dark = +, light = -, contrast maximized) Example: dominated by scanner cogging

Triple Channel Dosimetry Dose Map Consistency

- Dose map error estimation known before comparison
- Detect 'abnormal' scans
 - 90° rotation, curling, Newton rings

Example dose consistency map (iso-map) peak error ~2%

Triple Channel Dosimetry: Film Consistency

Triple Channel Dosimetry: Dose Consistency

One-scan Dosimetry: Stretching and Scaling

• Fitting Function

• x(D) = j + k/(D-l) - j,k,l are

coefficients to be fitted

Assumption

Calibrations have the same shape

X(D) = A+B.x(D) = A+B(j+k/(D-I))

General case

X(D) = A + B x(a + b D)
 X = RGB
 rescales calibration x
 a, b dose scaling, A, B color scaling

Two Point re-Calibration

Two point recalibration

- 1 unexposed + 1 exposed film Minimum cost possible
- Dose scaling (A=0, B=1)
 X(D) = x(a + bD), X = RGB
- Color scaling (a=0, b=1)
 X(D) = A + B x(D), X = RGB

Assumption

 Calibration functions keep shape Shape(x) = Shape(X) , x, X=RGB

"One-scan" Evaluation

compensates for

- Ambient conditions: temperature, humidity
- Inter-scan scanner variations,
- Post exposure time, film aging

Rescaling and Post Exposure Aging

Absolute aging wait t = 24 $h\Delta D(t) < 0.5\%$

IMRT Plan Examples vs. Time

Calibration films scanned two hours after exposure Patient/reference films scanned at various times

30 min. after 97.9% @2%/2mm

4 hours after 97.7% @2%/2mm Fimecorp International s.l.

3 days after 97.9% @ 2%/2mm

Consistency of Color Channels

Time after exposure		Gamma % passing for 2%@2mm		
Calibration	Patient film and reference	Red	Green	Blue
2 hr	30 min.	97.9	97.0	97.6
2 hr	60 min.	97.6	96.2	97.3
2 hr	4 hr	97.7	96.3	97.3
2 hr	24 hr	97.9	97.0	97.8
2 hr	72 hr	97.9	97.6	97.9

Single Point re-Calibration

• Single point recalibration

- 1 unexposed it's free and always possible
- Dose shift (A=0, B=1, b=1)
 X(D) = x(a + D), X = RGB
- Color shift (a=0, b=1, B=1)
 X(D) = A + x(D), X = RGB

Assumption

 Calibration functions keep shape Shape(x) = Shape(X) , x, X=RGB disturbance caused by offset only

• Single scan Evaluation

- compensates for
- Offset generating disturbances

Dosimetry with Re-Calibration

Recalibration Comparison Triple Channel Method

	None	1 point recalibration	2 point recalibratior
Passing rate 3%/3mm	99.6	99.8%	99.9%
Passing rate 2%/2mm	94.3%	96.3%	97.1%
- I	_		120 0

Lateral Scanner Non-Linearity Single vs. Triple Channel

	Calibration	Composite	Passing rate	
Gamma map Criterion			Single Channel	Triple Channel
2% / 2mm	•	•	90%	96%
	→	→	87%	96%
	•	→	98%	98%
	→	•	94%	97%
	• = centered→ = right edge		absolute dosimetry (no dose re-scaling), <5% (<12cG) lowest dose ignored,	

Consistency Comparison

Consistency measured across frame $D_{max} = 243 \text{ cGy}$, $D_{ave} = 139 \text{ cGy}$

Triple Channel Dosimetry Lateral Scanner Non-Linearity

- EBT film polarization causes lateral effect
- Non-dose-dependent part of lateral effect is compensated
- Mitigation only (partial compensation)

Lateral Response Artifact

Film Responses at Various Lateral Positions Epser 10000X

Response Scaling

For any dose D at any two lateral positions P and p, film responses are related by

Response(P,D)= $a_{P,p} + b_{P,p}^*$ Response(p,D)

where $a_{P,p}$ and $b_{P,p}$ are constants

Measure responses at two doses to determine $a_{P,p}$ and $b_{P,\text{\tiny D}}$

- One exposed film and one unexposed film
- Position P is the lateral center of the scanner

Lateral Response Scaled (Corrected)

Coefficients vs. Position

Lateral Artifact and Dose Measurement

Doses Measured Parallel and Perpendicular to Scar Direction

Lateral Artifact Corrected

Doses Parallel and Perpendicular to Scan Direction with Correction

Testing Lateral Response Compensation

Testing Lateral Response Compensation

Results for IMRT Films Scanned in Different Lateral Positions

Dose to Plan Comparison - Gamma test: % passing for 2%/2mm criteria

	Extreme left edge ¹	Center of Scanner	Extreme right edge
No correction for lateral position	84.3	94.9	94.6
Responses corrected for lateral position	97.3	97.2	97.1

1. In this position the high dose areas on the film are at the edge of the scan window

Inadequacy of the 3%/3mm Gamma Evaluation Metric

- "Recent studies have demonstrated that per-beam IMRT QA passing rates may not predict clinically relevant patient dose errors" *Chan, et al., Technology in Cancer Research and Treatment, June 24 2013.*
- "....IMRT and VMAT commissioning, along with product validation, would benefit from the retirement of the 3%/3mm passing rates as a primary metric of performance and the adoption instead of tighter tolerances" *Nelms et al., Med. Phys. 40(11) 2013, 111722.*
- " ... if gamma criteria are made more stringent (say 2%/2mm or less), the passing rate is a potentially useful metric to optimize for phantom dose analysis" *Nelms et al., Med. Phys. 38(10) 5477.*

Single IMRT Field- Multi-channel, 'One-scan'

Composite IMRT-Multi-channel, 'One-scan'

RapidArc[™], One arc-Multi-channel, 'One-scan'

RapidArc[™], Two arcs-Multi-channel, 'One-scan'

SRS One Field – Multi-channel, 'One-scan'

Triple Channel, 'One-scan' Film Dosimetry

- Separates dose-dependent response from dose-independent artifacts
 - •Compensates for film thickness variation
 - •Noise reduction without dose change
 - Mitigates scanner distortions
 - •Background compensation and/or double exposure unnecessary
- Enables entire film dose range
 - Dynamic range ratio >1000 (few cGy >40 Gy)
- Significant improvement of dose map accuracy
 - •<1% achievable (vs. 3% with single channel method)
 - Optimized calibration per specific scan
- Indication of inconsistency between film and calibration

www.FilmQAPro.com

Micke, Lewis, Yu - Multi-channel Film Dosimetry with Non-Uniformity Correction, Medical Physics, 38 (2011) 5, pp. 2523

Lewis, Micke, Yu, Chan - An Efficient Protocol for Radiochromic Film Dosimetry combining Calibration and Measurement in a Single Scan, Medical Physics, 39 (2012) 10, pp. 6339.

Don't be obstinate

- Forget single channel dosimetry
 - All response errors convert to dose errors
 - The errors are invisible to you
- Use multi-channel dosimetry
 - Compensates for film/scanner artifacts
 - <u>Consistency map makes errors visible</u>
- Use the "One-scan" protocol
 - Eliminates scan-to-scan variability
 - Reduce post-exposure wait to minutes

New Physics QA Tools in FilmQAPro

Automated Tools for

- •Star Shots
- •Flatness/symmetry
- •MLC Picket Fence

More to come

What is EBT3+?

- Configuration same as EBT3
- Perforated sheet with easy to detach reference strip
 - Strip properties as close as possible to patient film
 - Saves film cutting
 - Standardized strip size
- EBT3+ available since Dec.
 2012

New GafChromic QuiCk Phantom

New GafChromic QuiCk Phantom

New GafChromic Quick Phantom

Be kind to yourself – FilmQAPro is here to help

 Multi-channel dosimetry removes non-uniformity and gives estimate of dose uncertainty "One-scan" protocol eliminates variables and gets results in minutes

Conventional Single Channel Dosimetry

